

Sample Problem 18.02 Thermal expansion of a volume

On a hot day in Las Vegas, an oil trucker loaded 37 000 L of diesel fuel. He encountered cold weather on the way to Payson, Utah, where the temperature was 23.0 K lower than in Las Vegas, and where he delivered his entire load. How many liters did he deliver? The coefficient of volume expansion for diesel fuel is $9.50 \times 10^{-4}/\text{C}^{\circ}$, and the coefficient of linear expansion for his steel truck tank is 11×10^{-6} /C°.

KEY IDEA

The volume of the diesel fuel depends directly on the temperature. Thus, because the temperature decreased, the volume of the fuel did also, as given by Eq. 18-10 ($\Delta V =$

Calculations: We find

$$\Delta V = (37\,000\,\mathrm{L})(9.50 \times 10^{-4}/\mathrm{C}^{\circ})(-23.0\,\mathrm{K}) = -808\,\mathrm{L}.$$

Thus, the amount delivered was

$$V_{\text{del}} = V + \Delta V = 37\,000\,\text{L} - 808\,\text{L}$$

= 36 190 L. (Answer)

Note that the thermal expansion of the steel tank has nothing to do with the problem. Question: Who paid for the "missing" diesel fuel?

PLUS Additional examples, video, and practice available at WileyPLUS

18-4 ABSORPTION OF HEAT

Learning Objectives

After reading this module, you should be able to . . .

- **18.11** Identify that *thermal energy* is associated with the random motions of the microscopic bodies in an object.
- **18.12** Identify that *heat O* is the amount of transferred energy (either to or from an object's thermal energy) due to a temperature difference between the object and its environment.
- 18.13 Convert energy units between various measurement systems.
- 18.14 Convert between mechanical or electrical energy and thermal energy.
- **18.15** For a temperature change ΔT of a substance, relate the change to the heat transfer Q and the substance's heat capacity C.
- **18.16** For a temperature change ΔT of a substance, relate the

- change to the heat transfer Q and the substance's specific heat c and mass m.
- **18.17** Identify the three phases of matter.
- 18.18 For a phase change of a substance, relate the heat transfer Q, the heat of transformation L, and the amount of mass m transformed.
- **18.19** Identify that if a heat transfer *Q* takes a substance across a phase-change temperature, the transfer must be calculated in steps: (a) a temperature change to reach the phase-change temperature, (b) the phase change, and then (c) any temperature change that moves the substance away from the phase-change temperature.

Key Ideas

 Heat Q is energy that is transferred between a system and its environment because of a temperature difference between them. It can be measured in joules (J), calories (cal), kilocalories (Cal or kcal), or British thermal units (Btu), with

$$1 \text{ cal} = 3.968 \times 10^{-3} \text{ Btu} = 4.1868 \text{ J}.$$

 If heat Q is absorbed by an object, the object's temperature change $T_f - T_i$ is related to Q by

$$Q = C(T_f - T_i),$$

in which C is the heat capacity of the object. If the object has mass m, then

$$Q = cm(T_f - T_i),$$

where c is the specific heat of the material making up the object.

- The molar specific heat of a material is the heat capacity per mole, which means per 6.02×10^{23} elementary units of the material.
- Heat absorbed by a material may change the material's physical state -for example, from solid to liquid or from liquid to gas. The amount of energy required per unit mass to change the state (but not the temperature) of a particular material is its heat of transformation L. Thus,

$$Q = Lm$$
.

- The heat of vaporization L_V is the amount of energy per unit mass that must be added to vaporize a liquid or that must be removed to condense a gas.
- The heat of fusion L_E is the amount of energy per unit mass that must be added to melt a solid or that must be removed to freeze a liquid.